Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211385

RESUMO

Pulmonary fibrosis (PF) is a severe and progressive condition in which the lung becomes scarred over time resulting in pulmonary function impairment. Classical histopathology remains an important tool for micro-structural tissue assessment in the diagnosis of PF. A novel workflow based on spatial correlated propagation-based phase-contrast micro computed tomography (PBI-microCT), atomic force microscopy (AFM) and histopathology was developed and applied to two different preclinical mouse models of PF - the commonly used and well characterized Bleomycin-induced PF and a novel mouse model for progressive PF caused by conditional Nedd4-2 KO. The aim was to integrate structural and mechanical features from hallmarks of fibrotic lung tissue remodeling. PBI-microCT was used to assess structural alteration in whole fixed and paraffin embedded lungs, allowing for identification of fibrotic foci within the 3D context of the entire organ and facilitating targeted microtome sectioning of planes of interest for subsequent histopathology. Subsequently, these sections of interest were subjected to AFM to assess changes in the local tissue stiffness of previously identified structures of interest. 3D whole organ analysis showed clear morphological differences in 3D tissue porosity between transient and progressive PF and control lungs. By integrating the results obtained from targeted AFM analysis, it was possible to discriminate between the Bleomycin model and the novel conditional Nedd4-2 KO model using agglomerative cluster analysis. As our workflow for 3D spatial correlation of PBI, targeted histopathology and subsequent AFM is tailored around the standard procedure of formalin-fixed paraffin-embedded (FFPE) tissue specimens, it may be a powerful tool for the comprehensive tissue assessment beyond the scope of PF and preclinical research.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/patologia , Microtomografia por Raio-X/métodos , Microscopia de Força Atômica , Pulmão/anatomia & histologia , Bleomicina
2.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569738

RESUMO

CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) has been approved for people with CF and at least one F508del allele in Europe. In the US, the ETI label has been expanded to 177 rare CFTR mutations responsive in Fischer rat thyroid cells, including G85E, but not N1303K. However, knowledge on the effect of ETI on G85E or N1303K CFTR function remains limited. In vitro effects of ETI were measured in primary human nasal epithelial cultures (pHNECs) of a G85E homozygous patient and an N1303K homozygous patient. Effects of ETI therapy in vivo in these patients were assessed using clinical outcomes, including multiple breath washout and lung MRI, and the CFTR biomarkers sweat chloride concentration (SCC), nasal potential difference (NPD) and intestinal current measurement (ICM), before and after initiation of ETI. ETI increased CFTR-mediated chloride transport in G85E/G85E and N1303K/N1303K pHNECs. In the G85E/G85E and the N1303K/N1303K patient, we observed an improvement in lung function, SCC, and CFTR function in the respiratory and rectal epithelium after initiation of ETI. The approach of combining preclinical in vitro testing with subsequent in vivo verification can facilitate access to CFTR modulator therapy and enhance precision medicine for patients carrying rare CFTR mutations.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cloretos/uso terapêutico , Homozigoto , Mutação , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico
3.
Eur J Immunol ; 53(10): e2350394, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431194

RESUMO

Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.


Assuntos
Asma , Microbioma Gastrointestinal , Gravidez , Criança , Humanos , Feminino , Antibacterianos/efeitos adversos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Disbiose , Inflamação , Pulmão
4.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414422

RESUMO

BACKGROUND: Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12 years throughout the first 12 months of therapy. METHODS: In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12 months after initiation of ETI. RESULTS: In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12 months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3 months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3 months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS: Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12 months of therapy; however, levels close to healthy were not reached.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Escarro , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteoma , Mutação
5.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080569

RESUMO

BACKGROUND: Mucin disulfide cross-links mediate pathologic mucus formation in muco-obstructive lung diseases. MUC-031, a novel thiol-modified carbohydrate compound, cleaves disulfides to cause mucolysis. The aim of this study was to determine the mucolytic and therapeutic effects of MUC-031 in sputum from patients with cystic fibrosis (CF) and mice with muco-obstructive lung disease (ßENaC-Tg mice). METHODS: We compared the mucolytic efficacy of MUC-031 and existing mucolytics (N-acetylcysteine (NAC) and recombinant human deoxyribonuclease I (rhDNase)) using rheology to measure the elastic modulus (G') of CF sputum, and we tested effects of MUC-031 on airway mucus plugging, inflammation and survival in ßENaC-Tg mice to determine its mucolytic efficacy in vivo. RESULTS: In CF sputum, compared to the effects of rhDNase and NAC, MUC-031 caused a larger decrease in sputum G', was faster in decreasing sputum G' by 50% and caused mucolysis of a larger proportion of sputum samples within 15 min of drug addition. Compared to vehicle control, three treatments with MUC-031 in 1 day in adult ßENaC-Tg mice decreased airway mucus content (16.8±3.2 versus 7.5±1.2 nL·mm-2, p<0.01) and bronchoalveolar lavage cells (73 833±6930 versus 47 679±7736 cells·mL-1, p<0.05). Twice-daily treatment with MUC-031 for 2 weeks also caused decreases in these outcomes in adult and neonatal ßENaC-Tg mice and reduced mortality from 37% in vehicle-treated ßENaC-Tg neonates to 21% in those treated with MUC-031 (p<0.05). CONCLUSION: MUC-031 is a potent and fast-acting mucolytic that decreases airway mucus plugging, lessens airway inflammation and improves survival in ßENaC-Tg mice. These data provide rationale for human trials of MUC-031 in muco-obstructive lung diseases.


Assuntos
Fibrose Cística , Pneumopatias Obstrutivas , Adulto , Humanos , Camundongos , Animais , Expectorantes/uso terapêutico , Compostos de Sulfidrila/farmacologia , Compostos de Sulfidrila/uso terapêutico , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Escarro , Pneumopatias Obstrutivas/tratamento farmacológico , Inflamação/patologia , Carboidratos/farmacologia , Carboidratos/uso terapêutico , Pulmão
6.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362203

RESUMO

Elevated levels of matrix metalloprotease 9 (MMP-9) and neutrophil elastase (NE) are associated with bronchiectasis and lung function decline in patients with cystic fibrosis (CF). MMP-9 is a potent extracellular matrix-degrading enzyme which is activated by NE and has been implicated in structural lung damage in CF. However, the role of MMP-9 in the in vivo pathogenesis of CF lung disease is not well understood. Therefore, we used ß-epithelial Na+ channel-overexpressing transgenic (ßENaC-Tg) mice as a model of CF-like lung disease and determined the effect of genetic deletion of Mmp9 (Mmp9-/-) on key aspects of the pulmonary phenotype. We found that MMP-9 levels were elevated in the lungs of ßENaC-Tg mice compared with wild-type littermates. Deletion of Mmp9 had no effect on spontaneous mortality, inflammatory markers in bronchoalveolar lavage, goblet cell metaplasia, mucus hypersecretion and emphysema-like structural lung damage, while it partially reduced mucus obstruction in ßENaC-Tg mice. Further, lack of Mmp9 had no effect on increased inspiratory capacity and increased lung compliance in ßENaC-Tg mice, whereas both lung function parameters were improved with genetic deletion of NE. We conclude that MMP-9 does not play a major role in the in vivo pathogenesis of CF-like lung disease in mice.


Assuntos
Fibrose Cística , Animais , Camundongos , Fibrose Cística/complicações , Canais Epiteliais de Sódio/genética , Inflamação/patologia , Pulmão/patologia , Metaloproteinase 9 da Matriz/genética , Camundongos Transgênicos
7.
Front Physiol ; 13: 912049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991170

RESUMO

Background: Airway mucus provides important protective functions in health and abnormal viscoelasticity is a hallmark of muco-obstructive lung diseases such as cystic fibrosis (CF). However, previous studies of sputum macrorheology from healthy individuals and patients with CF using different experimental protocols yielded in part discrepant results and data on a systematic assessment across measurement settings and conditions remain limited. Objectives: The aim of this study was to develop an optimized and reliable protocol for standardized macrorheological measurements of airway mucus model systems and native human sputum from healthy individuals and patients with muco-obstructive lung disease. Methods: Oscillatory rheological shear measurements were performed using bovine submaxillary mucin (BSM) at different concentrations (2% and 10% solids) and sputum samples from healthy controls (n = 10) and patients with CF (n = 10). Viscoelastic properties were determined by amplitude and frequency sweeps at 25°C and 37°C with or without solvent trap using a cone-plate geometry. Results: Under saturated atmosphere, we did not observe any temperature-dependent differences in 2% and 10% BSM macrorheology, whereas in the absence of evaporation control 10% BSM demonstrated a significantly higher viscoelasticity at 37°C. Similarly, during the measurements without evaporation control at 37°C we observed a substantial increase in the storage modulus G' and the loss modulus G″ of the highly viscoelastic CF sputum but not in the healthy sputum. Conclusion: Our data show systematically higher viscoelasticity of CF compared to healthy sputum at 25°C and 37°C. For measurements at the higher temperature using a solvent trap to prevent evaporation is essential for macrorheological analysis of mucus model systems and native human sputum. Another interesting finding is that the viscoelastic properties are not much sensitive to the applied experimental deformation and yield robust results despite their delicate consistency. The optimized protocol resulting from this work will facilitate standardized quantitative assessment of abnormalities in viscoelastic properties of airway mucus and response to muco-active therapies in patients with CF and other muco-obstructive lung diseases.

8.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L401-L411, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080183

RESUMO

Muco-obstructive lung diseases are characterized by airway obstruction and hyperinflation, which can be quantified by imaging. Our aim was to evaluate µCT for longitudinal quantification of muco-obstructive lung disease in ß-epithelial Na+ channel overexpressing (Scnn1b-TG) mice and of the effects of neutrophil elastase (NE) knockout on its progression. Lungs from wild-type (WT), NE-/-, Scnn1b-TG, and Scnn1b-TG/NE-/- mice were scanned with 9-µm resolution at 0, 5, 14, and 60 days of age, and airway and parenchymal disease was quantified. Mucus adhesion lesions (MAL) were persistently increased in Scnn1b-TG compared with WT mice from 0 days (20.25 ± 6.50 vs. 9.60 ± 2.07, P < 0.05), and this effect was attenuated in Scnn1b-TG/NE-/- mice (5.33 ± 3.67, P < 0.001). Airway wall area percentage (WA%) was increased in Scnn1b-TG mice compared with WT from 14 days onward (59.2 ± 6.3% vs. 49.8 ± 9.0%, P < 0.001) but was similar in Scnn1b-TG/NE-/- compared with WT at 60 days (46.4 ± 9.2% vs. 45.4 ± 11.5%, P = 0.97). Air proportion (Air%) and mean linear intercept (Lm) were persistently increased in Scnn1b-TG compared with WT from 5 days on (53.9 ± 4.5% vs. 30.0 ± 5.5% and 78.82 ± 8.44 µm vs. 65.66 ± 4.15 µm, respectively, P < 0.001), whereas in Scnn1b-TG/NE-/-, Air% and Lm were similar to WT from birth (27.7 ± 5.5% vs. 27.2 ± 5.9%, P = 0.92 and 61.48 ± 9.20 µm vs. 61.70 ± 6.73 µm, P = 0.93, respectively). Our results suggest that µCT is sensitive to detect the onset and progression of muco-obstructive lung disease and effects of genetic deletion of NE on morphology of airways and lung parenchyma in Scnn1b-TG mice, and that it may serve as a sensitive endpoint for preclinical studies of novel therapeutic interventions for muco-obstructive lung diseases.


Assuntos
Elastase de Leucócito , Pneumopatias Obstrutivas , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Elastase de Leucócito/genética , Pulmão/patologia , Pneumopatias Obstrutivas/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos
9.
Cells ; 12(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36611917

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. In addition to chronic bronchitis and emphysema, patients often develop at least mild pulmonary hypertension (PH). We previously demonstrated that inhibition of inducible nitric oxide synthase (iNOS) prevents and reverses emphysema and PH in mice. Interestingly, strong iNOS upregulation was found in alveolar epithelial type II cells (AECII) in emphysematous murine lungs, and peroxynitrite, which can be formed from iNOS-derived NO, was shown to induce AECII apoptosis in vitro. However, the specific cell type(s) that drive(s) iNOS-dependent lung regeneration in emphysema/PH has (have) not been identified yet. AIM: we tested whether iNOS knockout in AECII affects established elastase-induced emphysema in mice. METHODS: four weeks after a single intratracheal instillation of porcine pancreatic elastase for the induction of emphysema and PH, we induced iNOS knockout in AECII in mice, and gave an additional twelve weeks for the potential recovery. RESULTS: iNOS knockout in AECII did not reduce elastase-induced functional and structural lung changes such as increased lung compliance, decreased mean linear intercept and increased airspace, decreased right ventricular function, increased right ventricular systolic pressure and increased pulmonary vascular muscularization. In vitro, iNOS inhibition did not reduce apoptosis of AECII following exposure to a noxious stimulus. CONCLUSION: taken together, our data demonstrate that iNOS deletion in AECII is not sufficient for the regeneration of emphysematous murine lungs, and suggest that iNOS expression in pulmonary vascular or stromal cells might be critically important in this regard.


Assuntos
Enfisema , Enfisema Pulmonar , Camundongos , Suínos , Animais , Elastase Pancreática/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Epitélio/metabolismo
10.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299227

RESUMO

Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood-gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/ultraestrutura , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Remodelação das Vias Aéreas/fisiologia , Células Epiteliais Alveolares/fisiologia , Animais , Células Epiteliais/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Surfactantes Pulmonares , Mucosa Respiratória/metabolismo
11.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200296

RESUMO

Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFß signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.


Assuntos
Células Epiteliais/patologia , Pulmão/patologia , Ubiquitina-Proteína Ligases Nedd4/fisiologia , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/patologia , Animais , Animais Recém-Nascidos , Células Epiteliais/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/etiologia
12.
Nat Commun ; 11(1): 2012, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332792

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na+ channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFß signaling, which promotes fibrotic remodeling. Our data support a role of mucociliary dysfunction and aberrant epithelial pro-fibrotic response in the multifactorial disease pathogenesis. Further, treatment with the anti-fibrotic drug pirfenidone reduced pulmonary fibrosis in this model. This model may therefore aid studies of the pathogenesis and therapy of IPF.


Assuntos
Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Adulto , Idoso , Animais , Biópsia , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mucina-5B/metabolismo , Proteômica , Piridonas/administração & dosagem , Ubiquitinação
13.
Front Physiol ; 9: 632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896115

RESUMO

Objective: Defective mucus production in the pancreas may be an important factor in the initiation and progression of chronic pancreatitis (CP), therefore we aimed to (i) investigate the qualitative and quantitative changes of mucus both in human CP and in an experimental pancreatitis model and (ii) to correlate the mucus phenotype with epithelial ion transport function. Design: Utilizing human tissue samples and a murine model of cerulein induced CP we measured pancreatic ductal mucus content by morphometric analysis and the relative expression of different mucins in health and disease. Pancreatic fluid secretion in CP model was measured in vivo by magnetic resonance cholangiopancreatography (MRCP) and in vitro on cultured pancreatic ducts. Time-changes of ductal secretory function were correlated to those of the mucin production. Results: We demonstrate increased mucus content in the small pancreatic ducts in CP. Secretory mucins MUC6 and MUC5B were upregulated in human, Muc6 in mouse CP. In vivo and in vitro fluid secretion was decreased in cerulein-induced CP. Analysis of time-course changes showed that impaired ductal ion transport is paralleled by increased Muc6 expression. Conclusion: Mucus accumulation in the small ducts is a combined effect of mucus hypersecretion and epithelial fluid secretion defect, which may lead to ductal obstruction. These results suggest that imbalance of mucus homeostasis may have an important role in the early-phase development of CP, which may have novel diagnostic and therapeutic implications.

14.
Cell Tissue Res ; 367(3): 537-550, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108847

RESUMO

Airway mucus obstruction is a hallmark of many chronic lung diseases including rare genetic disorders such as cystic fibrosis (CF) and primary ciliary dyskinesia, as well as common lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), which have emerged as a leading cause of morbidity and mortality worldwide. However, the role of excess airway mucus in the in vivo pathogenesis of these diseases remains poorly understood. The generation of mice with airway-specific overexpression of epithelial Na+ channels (ENaC), exhibiting airway surface dehydration (mucus hyperconcentration), impaired mucociliary clearance (MCC) and mucus plugging, led to a model of muco-obstructive lung disease that shares key features of CF and COPD. In this review, we summarize recent progress in the understanding of causes of impaired MCC and in vivo consequences of airway mucus obstruction that can be inferred from studies in ßENaC-overexpressing mice. These studies confirm that mucus hyperconcentration on airway surfaces plays a critical role in the pathophysiology of impaired MCC, mucus adhesion and airway plugging that cause airflow obstruction and provide a nidus for bacterial infection. In addition, these studies support the emerging concept that excess airway mucus per se, probably via several mechanisms including hypoxic epithelial necrosis, retention of inhaled irritants or allergens, and potential immunomodulatory effects, is a potent trigger of chronic airway inflammation and associated lung damage, even in the absence of bacterial infection. Finally, these studies suggest that improvement of mucus clearance may be a promising therapeutic strategy for a spectrum of muco-obstructive lung diseases.


Assuntos
Remodelação das Vias Aéreas , Inflamação/patologia , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Muco/metabolismo , Animais , Doença Crônica , Humanos , Inflamação/complicações , Pneumopatias/complicações
15.
J Allergy Clin Immunol ; 140(1): 190-203.e5, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27865862

RESUMO

BACKGROUND: Type 2 airway inflammation plays a central role in the pathogenesis of allergen-induced asthma, but the underlying mechanisms remain poorly understood. Recently, we demonstrated that reduced mucociliary clearance, a characteristic feature of asthma, produces spontaneous type 2 airway inflammation in juvenile ß-epithelial Na+ channel (Scnn1b)-transgenic (Tg) mice. OBJECTIVE: We sought to determine the role of impaired mucus clearance in the pathogenesis of allergen-induced type 2 airway inflammation and identify cellular sources of the signature cytokine IL-13. METHODS: We challenged juvenile Scnn1b-Tg and wild-type mice with Aspergillus fumigatus and house dust mite allergen and compared the effects on airway eosinophilia, type 2 cytokine levels, goblet cell metaplasia, and airway hyperresponsiveness. Furthermore, we determined cellular sources of IL-13 and effects of genetic deletion of the key type 2 signal-transducing molecule signal transducer and activator of transcription 6 (STAT6) and evaluated the effects of therapeutic improvement of mucus clearance. RESULTS: Reduced mucociliary allergen clearance exacerbated Stat6-dependent secretion of type 2 cytokines, airway eosinophilia, and airway hyperresponsiveness in juvenile Scnn1b-Tg mice. IL-13 levels were increased in airway epithelial cells, macrophages, type 2 innate lymphoid cells, and TH2 cells along with increased Il33 expression in the airway epithelium of Scnn1b-Tg mice. Treatment with the epithelial Na+ channel blocker amiloride, improving airway surface hydration and mucus clearance, reduced allergen-induced inflammation in Scnn1b-Tg mice. CONCLUSION: Our data support that impaired clearance of inhaled allergens triggering IL-13 production by multiple cell types in the airways plays an important role in the pathogenesis of type 2 airway inflammation and suggests therapeutic improvement of mucociliary clearance as a novel treatment strategy for children with allergen-induced asthma.


Assuntos
Asma/imunologia , Asma/fisiopatologia , Interleucina-13/imunologia , Depuração Mucociliar , Alérgenos/imunologia , Amilorida/farmacologia , Amilorida/uso terapêutico , Animais , Aspergillus fumigatus/imunologia , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Canais Epiteliais de Sódio/genética , Pulmão/citologia , Pulmão/imunologia , Camundongos Transgênicos , Pyroglyphidae/imunologia , Fator de Transcrição STAT6/genética , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
16.
PLoS One ; 10(6): e0129897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066648

RESUMO

INTRODUCTION: Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. OBJECTIVE: We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the ß-subunit of the epithelial Na⁺ channel (ßENaC). METHODS: ßENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. RESULTS: Airway surface dehydration in ßENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in ßENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. CONCLUSIONS: We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.


Assuntos
Desidratação/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Células Cultivadas , Desidratação/etiologia , Desidratação/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/patologia , Fumar/efeitos adversos
17.
Tissue Eng Part A ; 21(3-4): 669-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25316003

RESUMO

Respiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions. We demonstrate that DCI strongly induce expression of the Clara cell marker Clara cell secretory protein (CCSP). While KGF synergistically supports the inducing effect of DCI on alveolar markers with increased expression of surfactant protein (SP)-C and SP-B, an inhibitory effect on CCSP expression was shown. In contrast, neither KGF nor DCI seem to have an inducing effect on ciliated cell markers. Furthermore, the use of iPSCs from transgenic mice with CCSP promoter-dependent lacZ expression or a knockin of a YFP reporter cassette in the CCSP locus enabled detection of derivatives with Clara cell typical features. Collectively, DCI was shown to support bronchoalveolar specification of mouse PSCs, in particular Clara-like cells, and KGF to inhibit bronchial epithelial differentiation. The targeted in vitro generation of Clara cells with their important function in airway protection and regeneration will enable the evaluation of innovative cellular therapies in animal models of lung diseases.


Assuntos
AMP Cíclico/metabolismo , Dexametasona/administração & dosagem , Fator 7 de Crescimento de Fibroblastos/administração & dosagem , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Mucosa Respiratória/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Estudos de Viabilidade , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Engenharia Tecidual/métodos
18.
J Appl Physiol (1985) ; 117(3): 284-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24925982

RESUMO

The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and ß-epithelial sodium channel-overexpressing [ß-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn ß-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn ß-ENaC-Tg mice, but was increased in ß-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.


Assuntos
Arginase/metabolismo , Fibrose Cística/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa
19.
Am J Respir Cell Mol Biol ; 51(5): 709-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24828142

RESUMO

Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in ß-epithelial Na(+) channel-transgenic (ßENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in ßENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from ßENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from ßENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction.


Assuntos
Obstrução das Vias Respiratórias/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Metaloproteinase 12 da Matriz/imunologia , Muco/imunologia , Enfisema Pulmonar/imunologia , Obstrução das Vias Respiratórias/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Fibrose Cística/genética , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Desidratação/imunologia , Desidratação/metabolismo , Genômica , Macrófagos Alveolares/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Knockout , Muco/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/imunologia
20.
Am J Respir Crit Care Med ; 189(9): 1082-92, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24678594

RESUMO

RATIONALE: Recent evidence from clinical studies suggests that neutrophil elastase (NE) released in neutrophilic airway inflammation is a key risk factor for the onset and progression of lung disease in young children with cystic fibrosis (CF). However, the role of NE in the complex in vivo pathogenesis of CF lung disease remains poorly understood. OBJECTIVES: To elucidate the role of NE in the development of key features of CF lung disease including airway inflammation, mucus hypersecretion, goblet cell metaplasia, bacterial infection, and structural lung damage in vivo. METHODS: We used the Scnn1b-Tg mouse as a model of CF lung disease and determined effects of genetic deletion of NE (NE(-/-)) on the pulmonary phenotype. Furthermore, we used novel Foerster resonance energy transfer (FRET)-based NE reporter assays to assess NE activity in bronchoalveolar lavage from Scnn1b-Tg mice and sputum from patients with CF. MEASUREMENTS AND MAIN RESULTS: Lack of NE significantly reduced airway neutrophilia, elevated mucin expression, goblet cell metaplasia, and distal airspace enlargement, but had no effect on airway mucus plugging, bacterial infection, or pulmonary mortality in Scnn1b-Tg mice. By using FRET reporters, we show that NE activity was elevated on the surface of airway neutrophils from Scnn1b-Tg mice and patients with CF. CONCLUSIONS: Our results suggest that NE plays an important role in the in vivo pathogenesis and may serve as a therapeutic target for inflammation, mucus hypersecretion, and structural lung damage and indicate that additional rehydration strategies may be required for effective treatment of airway mucus obstruction in CF.


Assuntos
Obstrução das Vias Respiratórias/fisiopatologia , Fibrose Cística/fisiopatologia , Inflamação/fisiopatologia , Elastase de Leucócito/fisiologia , Muco/metabolismo , Obstrução das Vias Respiratórias/genética , Obstrução das Vias Respiratórias/patologia , Animais , Bronquiectasia/etiologia , Fibrose Cística/genética , Fibrose Cística/patologia , Modelos Animais de Doenças , Canais Epiteliais de Sódio , Deleção de Genes , Humanos , Inflamação/genética , Inflamação/patologia , Estimativa de Kaplan-Meier , Elastase de Leucócito/genética , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...